
R E S E A R CH A R T I C L E

Evaluating the capability of a UAV-borne spectrometer for soil
organic carbon mapping in bare croplands

He Zhang1 | Pu Shi1 | Giacomo Crucil1 | Bas van Wesemael1 |

Quentin Limbourg2 | Kristof Van Oost1

1Earth and Life Institute, Georges Lemaître

Center for Earth and Climate Research,

UCLouvain, Louvain-la-Neuve, Belgium

2Walloon Agricultural Research Centre (CRA-

W), Farming Systems, Territories and

Information Technology Unit, Gembloux,

Belgium

Correspondence

He Zhang, Earth and Life Institute, Georges

Lemaître Center for Earth and Climate

Research, UCLouvain, Louvain-la-Neuve 1348,

Belgium.

Email: he.zhang@uclouvain.be

Funding information

Belgian Federal Science Policy Office, Grant/

Award Number: SR/00/362; China Scholarship

Council, Grant/Award Number:

201706300034

Abstract

High-resolution, field-scale soil organic carbon (SOC) mapping in croplands is crucial

for effective and precise agricultural management. Recent developments in

unmanned aerial vehicles (UAVs) combined with miniaturized visible–near infrared

spectrometers have enabled the rapid and low-cost field-scale SOC mapping. How-

ever, a field-specific spectrotransfer model is often needed for such UAV-based

hyperspectral measurements, implying local sampling and model development are still

required, and this hampers the widespread application of UAV-based methods. In this

study, we aim to test to what extent SOC prediction models derived from an existing

regional soil spectral library (SSL) can be applied to UAV-based hyperspectral data,

without the need for additional field sampling. To this end, an UAV survey was con-

ducted over a bare cropland within the Belgian Loam Belt for field-scale SOC map-

ping. We evaluated two calibration approaches, one based on local sampling and

model development, and one where we capitalized on an existing (laboratory-based)

regional SSL. For the local calibration approach, we obtained a good prediction per-

formance with RMSE of 0.57 g kg�1 and RPIQ of 2.35. For the regional model, a

spectral alignment procedure was needed to resolve the discrepancy between UAV-

and laboratory-based measurements. This resulted in a fair SOC prediction accuracy

with RMSE of 0.93 g kg�1 and RPIQ of 1.45. The comparison of SOC maps derived

from the two approaches, along with an external validation showed a high consis-

tency, indicating that UAV-based spectral measurements, in combination with SSLs

have the potential to improve the efficiency of high-resolution SOC mapping.
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1 | INTRODUCTION

Soil organic carbon (SOC) affects many soil properties and functions,

including the ability to retain water and nutrients, to provide structure

promoting efficient drainage and aeration and to reduce loss of topsoil

via erosion (Ontl & Schulte, 2012; Robertson et al., 2014). SOC there-

fore plays a central role in the sustainable management of soil through

its control on soil productivity, carbon sequestration, water purifica-

tion and retention, and soil biogeochemical cycling (Stockmann

et al., 2013). Direct measurements of SOC are critical to assess cur-

rent SOC contents and to inform the selection of appropriate manage-

ment strategies where SOC contents are low. However, conventional

methods of measuring and mapping soil carbon at field to landscape

scales are usually labour-intensive due to the large number of samples
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required to cover the spatial variability of soils (Miklos et al., 2010).

Furthermore, monitoring changes in SOC in an efficient way and with

sufficient statistical confidence (de Gruijter et al., 2016), remains chal-

lenging as assessments are largely influenced by the sampling design

(Vašát et al., 2010).

In response to these demands, a broad range of spectroscopic

methods have been developed and are now routinely used as fast and

reliable tools for estimating SOC. SOC exhibits diagnostic absorption

features within the visible–near infrared (VNIR: 400–1300 nm) and

short-wave infrared (SWIR: 1300–2500 nm) spectral regions

(Chabrillat et al., 2019; Goetz et al., 1985). Soil spectroscopy exploits

the correlation between spectral features and chromophores for the

quantitative determination of SOC concentration (Mohamed

et al., 2018). More recently, the success of laboratory-based soil spec-

troscopy has been translated into proximal and remote sensing plat-

forms for the estimation of SOC at large scale (e.g., Castaldi,

Chabrillat, Jones, et al., 2018; Shi et al., 2020). Due to its high spatial

resolution and small influence of atmospheric factors, close-range

UAV-based spectroscopy has shown large potential to capture the

field-scale variability of SOC and to aid better and more targeted agri-

cultural management. UAV-based spectroscopy can be based on mul-

tispectral camera (Aldana-Jague et al., 2016; Biney et al., 2021) or

hyperspectral imagery (Laamrani et al., 2019). However, at present

these approaches require massive soil sampling efforts for the devel-

opment of local spectroscopic prediction models, and this remains an

important bottleneck (Aldana-Jague et al., 2016; Brown et al., 2005).

Along with the increasing availability of soil data, open-access soil

spectral libraries (SSLs) have been developed and enable a data-driven

approach to effectively provide soil information (Ballabio et al., 2016).

Exploiting the SSL to derive spectroscopic prediction models for SOC

estimation could alleviate the workload of local soil sampling and

chemical analyses (e.g., Castaldi, Chabrillat, Chartin, et al., 2018; Guer-

rero et al., 2016). To exploit a model calibrated with library, however,

it is necessary to keep the same protocol in the field and laboratory.

Nevertheless, there exists a large discrepancy between soil spectra

collected under optimal laboratory conditions and those acquired in

situ via close-range UAV sensing, as data acquisition equipment, pro-

tocols, and soil conditions are very different. In this case, a spectral

transfer procedure can be applied to quantify and correct the differ-

ences between the spectral outputs provided by the two instruments,

commonly called master and slave instruments. Past work has relied

on the concept of standard measurement protocols and internal soil

standard (ISS) to align data acquired using diverse spectrometers and

protocols under controlled laboratory conditions (Kopačková & Ben-

Dor, 2016). However, it remains unknown to what extent this

approach can be adopted to align spectral data measured from differ-

ent sources/platforms, for example, UAV-based spectra (outdoor con-

dition, different spatial dimension) versus laboratory spectra

(controlled indoor conditions), and to what extent the discrepancy can

be corrected so as to apply the SSL-based model on UAV-based spec-

tra for a field-scale SOC mapping.

We performed a case study consisting of UAV-based spectral

measurement and SOC analysis in a cropland at the central part of the

Belgium Loess Belt. This study presents a workflow for acquiring

hyperspectral information from close-range UAV-borne spectrometer

and tests whether it can be used to accurately predict spatial patterns

of SOC content at field scale. Furthermore, we integrate existing soil

data and spectral archives into the workflow, so as to alleviate the

effort needed for local sampling. We aim to implement and evaluate

spectral alignment procedures so that spectral readings measured

from different platforms/conditions (i.e., UAV- versus laboratory-

based) can be integrated. The objectives of this study are to

(i) evaluate the quality of hyperspectral measurements derived from a

UAV-borne spectrometer and (ii) present and evaluate a workflow

where a regional SLL is used to convert UAV-based spectral readings

into SOC predictions. Finally, we discuss the capability of UAV-based

spectrometer sensing for mapping SOC contents on bare croplands.

2 | MATERIAL AND METHODS

2.1 | Study area

The study area is located within the Belgian Loam Belt in the northern

part of Wallonia. The area covers the central loess belt from Gembloux

to Lincent (9.7 km-wide and 40 km-long, SW corner: 50.60 N, 4.65 E;

NE corner: 50.70 N, 5.06 E) (Figure 1a). The main soil type in the area

are Luvisols that are characterized by a silt loam texture and well-

drained soils. The climate of the region is temperate oceanic with mean

temperatures between 2.3�C (January) and 17.8�C (July) and a mean

annual precipitation of 790 mm (RMI, https://www.meteo.be).

2.2 | Data collection

A flowchart illustrating the data and modelling approaches used in this

study is shown in Figure 2. We use data from both a single field (local),

where UAV-based soil spectra were acquired and which was densely

sampled, and from an SSL (regional), where spectral information and

SOC data are available for a region in central Belgium.

2.2.1 | Local data

UAV-based spectra

An UAV survey was conducted in a cropland field within the afore-

mentioned region in May 2019. The field is located ca. 1 km east of

Gembloux (50.5649 N, 4.7204 E; area ca. 11 ha) and is a convention-

ally cultivated farmland with a winter wheat, winter barley, and sugar

beet crop rotation. The fields are annually ploughed to a depth of

ca. 25 cm resulting in a uniform SOC content in the plough layer

(Dvorakova et al., 2020). The topography is characterized by a slightly

undulated terrain with an altitude range between 161 and 168 m a.s.l.

The last tillage operation was a seedbed preparation, and this resulted

in a smooth and homogeneous soil surface (i.e., low roughness), which

was dry with very few residues present at the soil surface (Figure 3d).
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F IGURE 1 Study site and
sampling scheme of ‘regional’
SSL and ‘local’ field (a) ‘regional’
SSL: Spatial distribution of the
sampling points in the Belgian
Loam Belt (b) Satellite
orthoimage of UAV survey region
provided by Google Maps
(c) ‘local’ field: Ground sampling

and UAV survey on the study
site. The imagery is taken from
SENTINEL-2A product on one
day before UAV survey [Colour
figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Flowchart of the
methodology showing the data collection
and modelling approaches
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The UAV-based spectral data were acquired using a portable spec-

trometer (OCEAN FX Spectrometer, Ocean Optics, Inc., USA) with a

wavelength range between 350 and 1000 nm and a spectral resolu-

tion of ca. 0.39 nm. The FX was mounted on a high-payload aerial sys-

tem (Figure 3c). This UAV platform is a custom-built hexacopter and is

equipped with a DJI A2 flight controller. The total weight of the plat-

form (spectrometer + battery + drone frame) is 5.0 kg, and the UAV

has a flight time of ca. 15 min. An RTK/PPK (real-time kinematic and

postprocessing kinematic) enabled multi-GNSS (global navigation sat-

ellite system) receiver was connected to the FX to synchronize the

spectral acquisition with GNSS logging signals via a voltage pulse to

provide a high-precision geolocation. The high-precision PPK-GNSS

and the high acquisition speed (up to 4500 scans per second) of the

FX spectrometer enable a centimeter-level georeferencing accuracy

(Zhang et al., 2019). The spectrometer was mounted on a gimbal to

ensure a vertically downward acquisition angle during the flight. The

survey was conducted around 13:00 pm (i.e., solar noon) on 14 May

2019 under a cloudless sky. The FOV of the spectrometer was fixed

at 8� using a Gershun fore optic tube. The flight height was ca.15 m

above the take-off point, leading to a footprint with a radius of

ca. 1.05 m on the soil surface. Three consecutive flights were per-

formed during the data acquisition. Before each flight, the radiometric

calibration was conducted using a spectralon panel. A standard soil

sample (WB) was measured at a height of 10 cm as a benchmark after

each radiometric calibration and before the UAV take-off (see Sec-

tion 2.4.2). The acquisition interval was 1 s, and in total, 2448 valid

soil spectra were acquired (Figure 1c).

Soil data

A set of 179 soil surface samples (0–25 cm) from this field was col-

lected by the Walloon Agricultural Research Center (CRA-W) in

August 2018 according to a regular grid (Figure 1c). We refer to this

soil data set as ‘Local’ (Table 1). Sample positions were recorded using

a John Deere Starfire 3000 real time kinematic (RTK) GPS instrument

with 2.5 cm precision. The SOC content was analyzed by means of

the dry combustion method as detailed in Dvorakova et al. (2020).

This data set was related to the UAV-based spectral data under the

assumption that SOC changes between the sampling and UAV flight

(ca. 9 months) were not significant/measurable. Given the very slow

rate of change in SOC content reported for this region, for example,

F IGURE 3 Illustration of the
three spectroscopic measurement
scenarios (a) ‘laboratory’ setup: a
contact-probe assembly armed
with a halogen lamp (b) ‘proximal’
setup: fore optics were fixed
10 cm above the soil samples
under sunlight (c,d) ‘UAV’ setup:
information of main assembly

parts and a demonstration of the
in-situ UAV-based spectral
measurement [Colour figure can
be viewed at
wileyonlinelibrary.com]
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Goidts and van Wesemael (2007), we argue that is a very reasonable

assumption. Forty-five of the UAV-based spectral measurements

described above overlapped with sampling positions of the local soil

data set (i.e., were within a horizontal distance of less than 3 m). This

subset of the ‘Local’ soil data set is referred to as the ‘Local-UAV’ soil
dataset in the remainder of this paper (see sample collection,

Figure 1c).

2.2.2 | Regional data

A regional soil data set and SSL were constructed using the soil sam-

ples collected in the framework of the study of Shi et al. (2020). A

total of 83 samples were randomly collected on arable fields within

the larger study area in October 2018. For this study, we expanded

this soil archive with 45 additional samples from bare croplands in the

study area (Figure 1a). This data set is referred to as the ‘Regional’ soil
data set in the remainder of this paper. Using a consistent sampling

methodology, the 128 samples were taken from the upper 10 cm of

soil. The samples were analyzed for SOC content using an elemental

analyzer (see Shi et al., 2020 for a detailed description of the method-

ology). Although the sampling depth of the Regional soil data set

(i.e., 10 cm) is different than that of the ‘Local’ data set (i.e., 25 cm),

we argue that the difference in sampling depth between the two data

sets does not induce a bias, as the study site is ploughed regularly to a

depth of ca. 25 cm creating a uniform SOC content in the plough layer

(Meersmans et al., 2009).

Soil spectra for this regional soil data set were measured under

both laboratory and outdoor (proximal) conditions, where outdoor

measurements were performed as an intermediate step to evaluate

the effects of incident irradiance on in situ measurement. For the lab-

oratory setup, Vis–NIR reflectance spectra of 2-mm sieved soil sam-

ples were obtained using an ASD FieldSpec 3 FR spectrometer

(Analytical Spectral Devices Inc., USA, wavelength range: 350–

2500 nm, spectral resolution: 1 nm). The measurements were con-

ducted in a dark room, using an ASD contact probe, equipped with a

built-in light source (100 W halogen reflectorized lamp, Figure 3a).

The spectrometer was started 30 min prior to measurements to warm

up. The outdoor proximal measurements were performed under sun-

light with a cloudless sky using a portable FX spectrometer (which

was also used in the UAV surveys). To simulate the in situ soil surface

conditions, bulk soil samples without presieving were measured by

the FX spectrometer fitted with a fore optic accessory (Gershun tube)

with field of view (FOV) of 8�. The distance between the fore optic

and the soil samples was fixed at 10 cm. This setup was chosen to

simulate the UAV in situ scenario where reference scans were per-

formed before taking off. Soil samples were placed in Petri dishes, and

the spectral acquisition was conducted from 12:00 am to 2:00 pm

(within 2 h of local noon).

2.3 | Pretreatment of spectral data

Given that the two spectrometers (i.e., ASD and FX) have different

spectral ranges and resolutions, we resampled the ASD spectra to fit

the FX bands. Noisy segments at wavelengths below 400 nm and

beyond 900 nm were removed, retaining 400–900 nm range with res-

olution of ca. 0.39 nm. To smooth the signal, the Savitzky–Golay filter

was applied (Savitzky & Golay, 1964) with a third-order polynomial fit

and a window size of 59 data points due to the high spectral resolu-

tion. Derivative processing was not applied because the NIR reflec-

tance of the proximal measurement was sensitive to the changed

footprint (see Figure 5a).

2.4 | SOC predictive models

The processed spectral matrix was related to measured SOC values

with multivariate regression algorithms. Partial least square regression

(PLSR) was used to build spectral transfer functions for the prediction

of SOC. To avoid over- or underfitting, the optimal number of vari-

ables was determined as the one producing a model having the mini-

mal root mean square error (RMSE) of cross-validation. Two

calibration approaches were evaluated: (i) one based on the local soil

dataset (local model) and (ii) one based on the regional SSL (regional

model).

2.4.1 | Local model

The local model was constructed using the ‘Local-UAV’ soil data set

and the UAV-based spectra (n = 45). The calibration data set was

selected as a subset of the ‘Local-UAV’ data set using the Kennard–

Stone (KS) algorithm, which selects a subset with a uniform distribu-

tion over the predictor space so as to increase the diversity of the cali-

bration set (Kennard & Stone, 1969). We used two-thirds (n = 30) of

the observations to calibrate the predictive model, while the remain-

der (n = 15) for validation. Capitalizing on the high spectral resolution,

TABLE 1 Descriptive statistics of the soil organic content and number of samples for the ‘Regional’, ‘Local’ and ‘Local-UAV’ datasets

Soil dataset Description N� samples

SOC content (g kg�1)

Min Max Mean Sd

‘Regional’ Samples from Belgian Loam Belt 128 6.67 24.72 12.55 3.71

‘Local’ Samples from local study field 179 8.24 15.02 10.25 1.22

‘Local-UAV’ Overlap between ‘Local’ and UAV-spectral data points 45 8.76 13.10 10.39 1.19
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the models can be optimized by using a band-selection approach,

which assembles partial least-squares regression (PLSR), random for-

est (RF), and support vector machine (SVM) to designate the most

important spectral bands to improve SOC prediction, as detailed in

Feilhauer et al. (2015) and. Laamrani et al. (2019). After this selection

procedure, PLSR models were calibrated using only the selected

bands. We report the SOC prediction performance in Figure 4 and the

detailed band selection in Appendix (Figure A1). The model perfor-

mance metrics used include root mean square error [RMSE; Equa-

tion (1)], coefficient of determination (R2), ratio of the performance to

deviation [RPD; Equation (2)], and ratio of performance to inter-

quartile range [RPIQ; Equation (3)].

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

yo�yp
� �2

n

vuuut
ð1Þ

RPD¼ σ

RMSE
ð2Þ

RPIQ¼ IQ
RMSE

ð3Þ

Where: yo is the observed and yp is the predicted value, n is the number

of the samples, σ is the standard deviation, and IQ is the interquartile

range. The threshold values of RPD defined by Chang et al. (2001) are

widely used in soil spectroscopy literature to assess the model accuracy:

excellent prediction capability when RPD > 2, intermediate capability

when 1.4 < RPD < 2 and to be unreliable when RPD < 1.4. The RPIQ

values were also reported to consider the range of variation for data with

a nonnormal distribution as suggested by Bellon-Maurel et al. (2010).

2.4.2 | Regional model

The regional model was constructed using the laboratory spectral mea-

surements and SOC data from the ‘Regional’ soil data set (Regional SSL).

Given that the soil spectra of the regional SSL and UAV-based spectra

were measured under different conditions (see Table 2), a spectral align-

ment procedure was applied to eliminate the discrepancy of spectral

readings. According to Kopačková & Ben-Dor (2016), the spectral mea-

surements under diverse measurement conditions or instrumentation fac-

tors can be aligned by using an ISS to deal with systematic bias. The soil

standard was measured in each setup as the ‘standard spectrum’ for cor-
recting the slave setup (i.e., UAV-based) to the benchmark setup

(i.e., Regional SSL) [Equations (4) and (5)]:

Cλ ¼1� ρs,λ�ρBM,λ
� �

=ρs,λ
� � ð4Þ

Rc,λ ¼Ro,λ�Cλ ð5Þ

Where: λ is a given wavelength, ρS,λ is the reflectance of the ISS mea-

sured at the slave setup, ρBM,λ is the reflectance of the ISS measured

F IGURE 4 SOC prediction using the
local model. The left panels show the
selection of calibration samples (red) using
the Kennard-Stone algorithm. Projections
of the spectra into the principal
component space defined by the first two
principal components in each calibration.
The right panels show the measured

versus predicted SOC. The RMSE is given
as g C kg�1 [Colour figure can be viewed
at wileyonlinelibrary.com]

TABLE 2 Comparison of spectral measurement conditions

Regional SSL Local data

Laboratory Proximal UAV-based

Sensor ASD FX FX

Spectral range 350–2500 nm 350–1000 nm 350–1000 nm

Incident light Halogen lamp Sunlight Sunlight

Sensor to soil distance Contact 10 cm 15 m

Soil condition Sieved soil Bulk soil Seedbed

Perturbing factors None Incident irradiance, roughness Incident irradiance, roughness, footprint

of sensor, and so on.
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at laboratory setup, Ro,λ is the original soil sample reflectance (the soil

spectrum measured at the slave setup), Rc,λ is the corrected soil sam-

ple reflectance (the soil spectrum measured at the slave setup normal-

ized to the benchmark setup), and Cλ is a correction factor.

To evaluate the suitability of this transfer procedure, we first

assessed the alignment between ‘proximal’ and ‘laboratory’ spectra
for the ‘Regional’ soil data. We used one single soil sample from the

Regional data as the standard to perform the alignment between labo-

ratory and proximal spectral measurements. Then the SOC contents

were predicted by applying laboratory-SSL-based prediction model on

the aligned proximal spectra. To evaluate the robustness of this

approach, we repeated this procedure 128 times by changing the

standard sample selected from the Regional soil dataset. The predic-

tion performance was estimated by cross-validation where we used

70% of the data as a training set and 30% as a validation set, with

128 repetitions.

The UAV spectral measurement were aligned to the proximal

spectral measurements of the regional SSL. The alignment procedure

was implemented as follows: First, a scan of and ISS [WB standard

sand, detailed in Ben Dor et al. (2015)] before each UAV take-off was

used to eliminate the potential bias during white calibration caused by

the different FOV of the sensor during flight. In addition, we took a

single soil sample which was collected beneath the UAV survey path

on the study field. This sample was scanned during the flight as well

as in the proximal measurement setup (i.e., at 10 cm above the sam-

ples, see above). As a result, the alignment process was performed in

two steps based on: (i) a proximal observation and a UAV-based

observation at the same location. Given the homogeneity of the seed-

bed condition of soil surface, we consider the difference in spectral

readings between the proximal and UAV-based measurements as sys-

tematic. This discrepancy is related to the distance between the sen-

sor and the soil surface and is defined as the scale effect (ii) on a

proximal and UAV-based measurement of an ISS (WB standard sand).

Given the different illumination conditions, we consider that the dif-

ference is related to the light conditions and refer to this as the ambi-

ent effect. The overall correction factor that allows to transfer the

spectra can then be obtained by combining the scale and ambient

effects. Finally, a subset of SSL using the KS algorithm was deter-

mined (n = 38, with minimum RMSE of calibration) for calibrating the

regional model, and the 45 aligned ‘Local-UAV’ spectra were assigned

as external validation to assess the prediction accuracy.

2.5 | SOC prediction and mapping

For SOC mapping, the SOC contents of the UAV-based observation

points (n = 2448) were predicted using the local and regional predic-

tion models described above. Spatially continuous SOC maps were

created using Empirical Bayesian kriging in ArcMap 10.4 (ESRI) and

the point SOC predictions. The inner part of the field was masked out

due to crop cover (Figure 1). Two SOC maps were derived: (i) based

on the local model (SOC map A) and (ii) based on the regional model

(SOC map B). In addition, given the very high sampling density of the

‘Local’ soil data set (i.e., 179 samples), a SOC map was created using

kriging interpolation as a reference (SOC map C). Using this reference

map, prediction error maps were generated. To visualize the detailed

variation of the SOC maps, three representative transects along the

elevation gradient were extracted from each SOC map for

comparison.

3 | RESULTS

3.1 | Summary of soil properties

The SOC content of ‘Regional’ soil dataset varied from 6.67 to

24.72 g kg�1 with a mean value of 12.55 g kg�1 and a standard devia-

tion (Sd) of 3.71 g kg�1 for the 128 samples (Table 1). The ‘local’ soil
dataset contained 179 samples with SOC values ranging between

8.24 and 15.02 g kg�1 (Sd of 1.22 g kg�1). The ‘Local-UAV’ soil

dataset contained 45 samples with a smaller range (8.76–

13.10 g kg�1) and Sd (1.19 g kg�1).

3.2 | Local model

The local model shows good performance in SOC prediction using

UAV-based spectra (Figure 4). The RMSE is 0.57 g kg�1, with an RPD

of 2.08 and an RPIQ of 2.35. The band-selection results are shown in

Figure A1, and the ensemble approach improved the predictive accu-

racy of the local model.

3.3 | Regional model with spectral alignment

The laboratory and proximal measurements result in spectral curves

with similar shape and magnitude (Figure 5). The proximal spectra

acquired with the fore optic (i.e., smaller FOV) shows random noise at

wavelengths beyond 800 nm and the reflectance was lower compared

to those obtained by laboratory measurements. The UAV measure-

ments (in-situ, at the height of ca. 15 m) result in a distinctly different

reflectance curve from 550 nm onwards. In order to understand this

signal, we first report on the alignment between proximal and labora-

tory spectra (Figure 5b). A correction factor emerged, ranging

between 0 and 1.3, showing that the proximal measurement slightly

underestimated the reflectance relative to laboratory measurements.

In a second step, we relate the UAV- and proximal spectra. The proce-

dure to align the UAV-based spectra to laboratory spectra is shown in

Figure 5(c)–(f ). The correction factor for scale effect ranged from 0.8

to 1.2 and the correction factor for ambient effect ranged from

ca. 1 to 1.15. When multiplying the two ratios, the correction coeffi-

cient showed a steady growing trend from 0.8 to 1.4 with increasing

wavelength. The aligned reflectance curve of the UAV measurement

showed similar magnitude and slope as the laboratory measurement.

Figure 6 shows the prediction results of the SSL-based regional

models applied on the aligned proximal spectra. The use of a single

ZHANG ET AL. 7



soil sample as standard shows a strong capability to perform the align-

ment: the SOC predictions were mostly accurate (R2 = 0.63,

RPIQ = 1.5), also when using different soil samples to align the mea-

surements. This suggests that the SSL-based (laboratory) model is

transferable to the aligned proximal spectra. Similarly, the UAV-based

aligned spectra, comparing to original spectra, had improved predic-

tion in combination with the regional model (Table A1). It provides a

lower, but still fair prediction capability for SOC with an R2 of 0.49

and an RPIQ of 1.45 (Figure 7).

3.4 | SOC mapping

SOC maps generated using the three approaches are shown in

Figure 8. The UAV-based SOC maps show more spatial details relative

to the ground sampling-based estimation (SOC map C) due to the

higher spatial sampling resolution (Figure 8b). Although differences in

the spatial patterns among the three maps are notable, they consis-

tently show higher SOC contents mainly on the toeslope (south of the

F IGURE 5 (a) One soil sample
measured from different setups
illustrating the discrepancy in
spectral readings. (b) The spectral
alignment between proximal and
laboratory measurement.
(c) Correction for scale effect
based on soil spectrum measured
from Mid-air and from proximal,

respectively (d) Correction for
ambient effect based on ISS
spectral measurement at
laboratory and proximal
conditions, respectively
(e) Correction factor calculated
from multiplying ratio A and ratio
B (f) Applying the correction
coefficient to transfer the UAV
(Mid-air) spectral data into the
laboratory condition [Colour
figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 SOC prediction using laboratory-based regional model
on aligned proximal spectra. The boxplot indicates the predicted
values of each observation in the repeated cross-validation [Colour
figure can be viewed at wileyonlinelibrary.com]
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field, Figure 8b). The prediction based on the UAV-based spectra and

the local model shows a similar SOC range and mean value (10.68

and 10.61 g kg�1) as the reference map (i.e. map C based on ground

sampling). In contrast, the map derived from the regional model shows

a slight bias of ca.0.8 g kg�1, which is consistent with the RMSE of

the SSL-based predictive model (0.93 g kg�1). The error maps of local

and regional models show a similar spatial distribution of the predic-

tion error, while the (regional) map shows a higher bias and an under-

estimation of the SOC contents (Figure 8c). The SOC values extracted

from the three transects show the same trend as observed with the

reference map (map C) Figure 8d). A slight bias can be observed

between UAV (local)- and UAV (regional)-derived predictions, the

magnitude of which was in accordance with the bias observed from

the density plot.

4 | DISCUSSION

4.1 | Capability of UAV-borne spectrometry for
SOC mapping

Our results demonstrated that UAV-based hyperspectral measure-

ments can be an effective method for assessing the surface SOC con-

tent of bare cropland. Both local- and SSL-based calibrations provided

acceptable predictions of within-field SOC patterns at very high spa-

tial resolution. As expected, the use of in-situ data to construct a local

model resulted in a high prediction accuracy (RMSE = 0.58 g kg�1,

RPIQ = 2.35). However, this accuracy comes at a high cost as it

requires detailed local soil sampling and chemical analysis. In contrast,

the regional model utilizes an existing SSL, which can substantially

decrease the need for in-situ sampling, thereby providing a more

time- and cost-effective workflow. However, the prediction based on

the regional SSL-model had less accuracy (RMSE = 0.93 g kg�1,

RPIQ = 1.45) and had a bias. The errors associated with the regional

SSL-based prediction is probably related to two aspects: first, during

the alignment of the UAV-based spectra with laboratory measure-

ments that were used to populate the SSL, the application of a

transfer function inevitably induces noise and bias. Second, using

regional calibrations to make predictions at local scales are usually

challenging when the local dataset has smaller range of variation

(Guerrero et al., 2014; Stenberg et al., 2010). However, the prediction

is still a good representation in terms of the relative variation of SOC

values at the field scale, which provides useful information for field-

scale management or for designing an optimal sampling strategy in

the context of SOC monitoring. Likewise, this method can provide a

precise estimation of the variances within the strata, which can assist

the sample size determination in strata by Neyman allocation

(de Gruijter et al., 2015). In addition, the spatialized spectral data as

ancillary information can also be used for downscaling existing SOC

maps (e.g., Malone et al., 2017).

It should be noted that the SOC variation in this study was rela-

tively small compared to other studies using UAV-based spectroscopy

(Aldana-Jague et al., 2016; Biney et al., 2021; Laamrani et al., 2019).

The successful prediction of SOC using UAV-derived spectra demon-

strates an adequate performance and sensitivity of hyperspectral sen-

sor to derive effective information from noisy signals (caused by

surface disturbing conditions) given the fine spectral resolution, even

when the variation range of the target variable is small. This is impor-

tant for UAV-based field-scale monitoring as soil properties within a

single field tend to have limited variability.

4.2 | Potential of high spectral resolution for
model optimization

Several studies have investigated using multispectral (Aldana-Jague

et al., 2016; Biney et al., 2021) and hyperspectral (Laamrani

et al., 2019) imaging sensors on UAV platforms to assess SOC con-

tents. As opposed to imaging sensors, the point spectrometer used in

this study provides very high spectral resolution at less than 1 nm, but

has a limited capability to identify ground objects. The use of point

spectrometers therefore requires the precise geotagging during the

data acquisition. Here, we integrated the PPK (post-processing kine-

matic) positioning technique with the triggering system of the

F IGURE 7 SOC prediction using the
regional model. The left panels show the
selection of calibration samples (red) using
the Kennard-Stone algorithm. Projections
of the spectra into the principal
component space defined by the first two
principal components in each calibration.
The right panels show the measured
versus predicted SOC. The RMSE is given

as g C kg�1 [Colour figure can be viewed
at wileyonlinelibrary.com]
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spectrometer, enabling a centimetre-level accuracy during spectral

acquisition. In addition, the fine spectral resolution enables the band-

selection by the ensemble modelling approach (Du et al., 2012;

Feilhauer et al., 2015; Laamrani et al., 2019). With the specific bands

or regions sensitive to SOC content being selected and the bands of

low SNR (Signal-to-noise Ratio) removed, the prediction performance

was improved. When the band-selection approach applied on differ-

ent measurement setups (Figure A1), the results showed different

effects: For the laboratory and proximal measurements, the important

bands were found in 410–440, 540–570 and 880–900 nm, which

were in accordance with other studies using single modeling approach

(i.e., PLSR) for selecting important bands when predicting carbon. For

F IGURE 8 Comparison of the kriging SOC maps. (a) Location of the transects and the region of interest in the study field with a topographic
overview. Region of interest shows the overlap region both UAV survey and ground survey covered (b) Spatial SOC predication on region of
interest by the three approaches. UAV (local): Prediction model calibrated using the in-situ local data; UAV (regional): Prediction model calibrated
using the library-based regional data; GS: Ground sampling-based kriging map (c) Error maps of the region of interest. The density plot shows the
distribution of error using GS map as reference (d) The three extracted transects showing SOC values derived from the three maps. Ref:
Measured value regarded as reference points [Colour figure can be viewed at wileyonlinelibrary.com]
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example, Sarkhot et al. (2011) identified wavelengths 358, 378–438,

498–768, 728–1148 nm in the Vis–NIR region as important for the esti-

mation of total carbon in the soil. For UAV measurements, the important

bands (i.e., around ca. 500 nm and 880 nm) were consistent with those

obtained under laboratory or proximal conditions. This suggests that the

position of diagnostic bands is related to the mineral composition of the

soil itself (Nocita et al., 2015), and does not vary with measurement con-

ditions or factors such as texture (i.e., particle size fraction) or moisture

(Laamrani et al., 2019). In our case, the local model based on UAV spectra

benefited most from the band-selection where the RPIQ increased from

1.5 to 1.9, while it was less effective on the laboratory and proximal con-

ditions where a slight amelioration was observed in UAV measurement.

These results indicate that the band-selection approach is more effective

when data contains more random noise.

4.3 | Spectral transfer procedure

Based on our assessment of the spectral alignment procedures, we

showed that differences in reflectance readings exist but that these

can be regarded as a systematic bias and the robustness of the SOC

prediction models is still good. UAV-based spectral measurement can

be considered as another form of ‘proximal’ measurement but with

more perturbing factors that need to be considered, including:

(i) disturbance of field surface characteristics such as soil roughness

and moisture content (Croft et al., 2012; Wu et al., 2009); (ii) temporal

variations in anisotropic hemispherical illumination characteristics,

solar zenith angle changes, atmospheric scattering (Anderson

et al., 2011); (iii) field-of-view (FOV) of the fore optic and the spatially

related responsivity of field spectrometers (MacArther et al., 2013);

(iv) the distance between the sensors and objects (Kamal et al., 2017;

Kipp et al., 2014). These factors, together with BRDF effects, compli-

cate spectral measurements and further research is needed to isolate

these effects. Nevertheless, as demonstrated in the alignment

between laboratory measurement of sieved soil and proximal mea-

surement of bulk soil, the spectral features were robust either under

controlled (halogen lamp) or solar illumination. Based on this, we

showed the discrepancy of spectral readings between different

measurement conditions as systematic bias and therefore, the SOC

prediction models are transferable after proper alignment. Given the

optimal soil condition (dry seedbed without residue) and weather con-

dition (clear sky), we simplified these factors into two main aspects,

that is, a footprint-induced scale effect and an ambient condition-

induced effect. Consequently, the alignment procedure using the ISS

concept (Kopačková & Ben-Dor, 2016) was applied in two steps: First,

the ambient effect involved illumination conditions and irradiance

measurement. The illumination under laboratory conditions was stable

and strictly defined by the light intensity and angle, while it may be

varying during in-situ measurements. Also, when measuring irradiance

in the field, a coarse control of the measurement geometry between

Lambertian reference panel and the incident light could lead to a bias.

Our study showed that the spectral alignment using an ISS provides a

robust mean to address these issues. Regarding the scale effect, it is

probably a combined effect of reflectance anisotropy of the soil sur-

face, measurement geometry and footprint (e.g., Aasen et al., 2018).

Theoretically, a direct radiometric correction using a spectralon panel

(measuring the down-welling irradiance) at mid-air would be the ideal

solution but it requires a large reference panel and accurate position-

ing of the UAV, which is not practical. In our approach, we aligned

one proximal and one mid-air observation from the same location

(which can be acquired during the UAV takeoff phase), under the con-

dition that the soil is homogenous in terms of roughness and mois-

ture. Therefore, we suggest that such a correction should be

conducted per field (i.e., under the same surface condition). In a pre-

experiment, we measured the spectral reflectance over a ploughed

field with random positions within 1 m2 at different height and inves-

tigated the standard deviation of the spectra of the repeated mea-

surements at variable heights (Figure A2). The result showed that the

observations at higher altitude had lower standard deviation than

those of lower altitudes. This indicates the larger footprint has aver-

aged the shadow-caused signal deviations and the spectral features

become more homogeneous. From a height of ca. 2 m, we obtained

relatively stable spectra which supports the assumption for the ‘scale’
correction applied in this study. The two-step correction procedure as

well as the SSL-based SOC mapping workflow is summarized in

Figure A3. However, since the study was conducted in a homogenous

field, the effect of disturbing factors such as soil roughness, moisture

and residues cover were not investigated. Further work is required to

test the replicability of the results by performing the UAV flight under

varying sunlight and surface conditions, and to seek correction

methods to address the noise and bias that might be caused by those

disturbances.

4.4 | Limitations and outlook

With the spectral alignment paving the way of exploiting SSL-based

model on UAV-based spectra, the key challenge for improving accu-

racy turns into how to effectively use global/regional calibrations to

predict local variation in SOC content. In this study, the use of the

Kennard-Stone algorithm to select a subset for calibration has

improved the model performance to some extent, yet efforts are still

needed on predicting narrow variation of SOC content from a general

model. Overall, this study proposed a first basic workflow to integrate

field-scale UAV-based approaches with SSLs. We demonstrated that

there is a potential to reduce the need for sampling and analytical

efforts by using SSL-based models. Along with the generalization of

open-access SSLs, this technique can have a wide range of applica-

tions for measuring/monitoring soil properties efficiently.

5 | CONCLUSIONS

This study presented and evaluated a methodology to derive SOC

estimations for bare cropland soils using a UAV-borne spectrometer.

Two calibration approaches (based on local sampling and regional SSL,
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respectively) were evaluated and both showed good capability for

SOC content prediction. For the local calibration, the prediction can

be optimized by band-selection approach to obtain an improved pre-

diction performance (RPIQ = 2.35, RMSE = 0.57 g kg�1). For the

regional model, due to the discrepancy in spectral measurements, a

spectral alignment procedure needs to be applied so that the SSL-

based regional model can be applied to UAV-based spectra for SOC

prediction. Finally, we demonstrated that the use of an SSL-based

regional model had a fair predictive capability for local SOC predic-

tion, albeit with a lower performance than approaches relying on local

sampling (RPIQ = 1.45, RMSE = 0.93 g kg�1). This has the potential

to reduce the need for high resolution in-situ sampling, thereby pro-

viding a more time- and cost-efficient workflow. The comparison of

SOC maps derived from the three approaches (i.e., SSL-based regional

model, in-situ-based local model and sampling-based interpolation)

showed high consistency, suggesting that UAV-based spectral mea-

surements, in combination with SSLs has the potential to improve the

efficiency in SOC mapping and precision agriculture.
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APPENDIX A

TABLE A1 Performance of SOC prediction using SSL-based regional model on original UAV spectra and aligned UAV spectra

Dataset RMSE (g kg�1) R2 RPD RPIQ

Original UAV-based spectra 3.43 0.34 0.35 0.39

Aligned UAV-based spectra 0.92 0.48 1.29 1.45

F IGURE A1 Results of the ensemble band-selection approach in
SOC prediction in the three datasets. (a) Results of selected bands.
Black and white color range in each graph illustrates the relative
importance of the respective selected bands (in yellow) in each
dataset. (b) Cross-validation results showing SOC prediction using the
full bands and selected bands [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE A2 Boxplot showing the standard deviation of spectra in
Vis–NIR (400–1000 nm) regions measured at random positions at
different heights [Colour figure can be viewed at
wileyonlinelibrary.com]
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F IGURE A3 Flowchart showing the
spectral alignment workflow for SSL-
based SOC modelling and mapping
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